								ADRI INSTITU		
					DEF	PARTMENT		CAL AND EL		
								CO-PO MA		
	ı	1	lea casa cara		•	£		.TECH I SI		
		CO1						ition from so		
		CO2	_					s and correc		
		CO3		-	-	_		markers in i		
		CO4 CO5	_					ling/listenin h/chart/tab		
	-	103	produce a	Conerent pa	llagi apii iii	erpreung a	Ilgui e/gi ap	II/Ciiai i/ iau		
R161101	ENGLISH-I		PO1	PO2	PO3	PO4	PO5	PO6		
161	15	C01	-	-	-	-	-	-		
Œ		C02	-	-	-	-	-	-		
		C03	-	-	-	-	-	-		
		C04	-	_	_	-	_	-		
		C05		-	-	-	-	-		
		Target								
				<u> </u>		ļ.	<u> </u>	<u> </u>		
		CO1	Understand	d the first o	rder ordina	ry Differenti	ial equation	s and analys		
		CO2	Classify and	d solve theh	igher order	ordinary di	fferential e	quations and		
		соз	ApplyLaplace transformations and Evaluatethe improper integral							
		CO4	Remember partialdifferentiationandCompute extreme values.							
	-	CO5	Construct the Partial differential equations and Solve first order part							
7	ICS	CO6	_			r partial diff				
R161102	MATHEMATICS-I		PO1	PO2	PO3	PO4	PO5	PO6		
(16		C01	3	2	-	-	-	-		
E	AT	C02	3	2	-	-	-	-		
	Σ	C03	3	2	-	-	-	-		
		C04	3	2	-	-	-	-		
		C05	3	2	-	-	-	-		
		C06	3	2	-	-	-	-		
		Target	3	2						
	_									
		CO1				·		properties,		
		CO2		-				ding calorifi		
		соз						of galvanic o		
		CO4						crystals,sup		
	ح ا	CO5						res, synthes		
10	nistı	CO6	Recognizer	ion-conven	uonai energ	gy sources, c	Construction	n & working		
110(hen		PO1	PO2	PO3	PO4	PO5	PO6		
R161106	Applied Chemistry	C01	2	3	-	-	-	-		
Œ	plie	C02	3	3	-	-	_	-		
	Ap	C03	2	2	-	-	-	_		
		C04	3	2	-	_	-	_		
	İ	UJ-1			<u> </u>					

CO1	Able to explain about synthesis, physical and mechanical properties,
CO2	Recognize specific characteristic properties of fuels including calorifi
соз	Understanding the principles, Construction and working of galvanic
CO4	Discovery of advanced materials i.e.nanomaterials,liquidcrystals,sup
CO5	Understanding the structures of solid crystalline structures, synthes
CO6	Recognizenon-conventional energy sources, construction & working
	-

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	3	-	-	-	-
C02	3	3	-	-	-	-
C03	2	2	-	-	-	-
C04	3	2	-	-	-	-

C05	5	2	1	-	-	-	-
COE	6	2	2	-	-	-	-
Tar	rget	2.33	2.17				

R161111
Engineering Mechanics

CO1	To understand the concepts of force and friction, direction and its ap
CO2	To understand the application of free body diagrams, solution to pro
соз	To understand the concepts of centroid and Centre of gravity.
CO4	To understand the concepts of moment of inertia and polar moment
CO5	To understand the motion of a particle in straight line and in curvilin
CO6	To understand the concepts of work, energy and particle motion.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	-	-	-	-
C02	3	2	1	-	-	-
C03	3	2	-	-	-	-
C04	3	2	1	-	-	-
C05	3	2	-	-	-	-
C06	3	2	1	-	-	-
Target	3	2	1			

Computer Programming

R161107

R161108

CO1	Understanding basic jargon of Computer and formulating algorithmi
CO2	Understanding programming style in C
CO3	Understanding branching & iteration in Problem solving.
CO4	Build program blocks using Modular programming approach.
CO5	Implementation of data using Arrays & Strings
CO6	Comprehension of group data using structures and File Management

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	2	-	2	-
C02	1	1	1	-	2	-
C03	2	2	2	2	-	-
C04	1	2	3	3	-	-
C05	2	3	2	2	1	-
C06	2	3	3	3	-	1
Target	1.67	2.17	2.17	2.5	1.67	·

Imental Studies

- 1		Able to Understand The concepts of the ecosystem
- 1		Able to Understand The natural resources and their importance
- 1		Able to learn The biodiversity of India and the threats to biodiversity
		Able to learn Various attributes of the pollution and their impacts
1		Able to Understand Social issues both rural and urban environment
ĺ	CO6	Able to Understand About environmental Impact assessment and Ev

	PO1	PO2	PO3	PO4	PO5	PO6
C01	-	-	-	-	-	-

. – . =		_						
Environ	C02	-	-	3	-	-	-	
E	C03	-	-	-	-	-	-	
	C04	-	ı	3	-	-	-	
	C05	-	-	3	-	-	-	
	C06	-	-	3	-	-	-	
	Target			3				
	CO1	Estimate th	ne amount o	of metal ion	s present in	different so	olutions (L5	
8 7	CO2	Analyse the	e quality pa	rameters of	water (L4)			
eri	соз	Determine	the strengt	h of differe	nt solutions	by using dif	fferent inst	
Sine								
Eng		PO1	PO2	PO3	PO4	PO5	PO6	
Applied / Engineering	C01	-	3	2		-	-	
plie	C02	-	2	3	-	-	-	
	C03	-	1	2	-	-	-	
	Target		2	2.33				
	CO1	identify the	context, to	pic, and pie	eces of spec	ific informa	tion from s	
tio	CO2	take notes	while listen	ing to a talk	/lecture; to	answer qu	estions in E	
ica.	соз	Write sumr	maries base	d on global	comprehen	sion of reac	ding/listenir	
l unu								
		PO1	PO2	PO3	PO4	PO5	PO6	
English - Communication Skills Lab – 1	C01	-	-	-	-	-	-	
Sh	C02	-	-	-	-	-	-	
ng i	C03	-	-	-	-	-	-	
"	Target							
	•							
	CO1	Understand	the basic t	erminology	used in cor	mputer prog		
	603	Understand the basic terminology used in computer programming Write, compile and debug programs in C language.						
1	COZ	Write, com	pile and de				gramming	
	CO3	Use differe	nt data type	bug prograr es in a comp	ns in C lang outer progra	uage. am.		
	CO3	Use differe Design pro	nt data type grams invol	bug prograres in a composition	ns in C lang outer progra n structures	uage. am. s, loops and	functions.	
ab	CO3 CO4 CO5	Use differe Design prog Understand	nt data type grams invol d the differe	bug programes in a composition of the composition o	ns in C lang outer progra n structures en call by va	uage. am. s, loops and alue and call	functions.	
ng Lab	CO3 CO4 CO5 CO6	Use differe Design prog Understand Understand	nt data typo grams involod the differod the dynan	bug prograr es in a comp ving decisio ence betwee nics of mem	ns in C lang outer progra n structures en call by va ory by the u	uage. am. s, loops and alue and call use of point	functions. I by referen	
ıming Lab	CO3 CO4 CO5	Use differe Design prog Understand Understand	nt data typo grams involod the differod the dynan	bug prograr es in a comp ving decisio ence betwee nics of mem	ns in C lang outer progra n structures en call by va ory by the u	uage. am. s, loops and alue and call	functions. I by referen	
amming Lab	CO3 CO4 CO5 CO6	Use differe Design prog Understand Understand Use differe	nt data typo grams involid the differed the dynan nt data stru	bug prograr es in a comp ving decisio ence betwee nics of mem ectures and	ns in C lang outer progra n structures en call by va ory by the u create/upd	uage. am. s, loops and alue and call use of point ate basic da	functions. I by referen ers ta files.	
ogramming Lab	CO3 CO4 CO5 CO6 CO7	Use differe Design prog Understand Understand Use differe	nt data type grams involud the differed the dynam nt data stru PO2	bug programes in a comparing decision ence between ics of memoratures and	ns in C lang outer progra n structures en call by va ory by the u create/upd	uage. am. s, loops and alue and call use of point ate basic da	functions. I by referen	
r Programming Lab	CO3 CO4 CO5 CO6 CO7	Use differe Design prog Understand Understand Use differe PO1 3	nt data typo grams involond the differed the dynam nt data stru PO2	bug programes in a composition of the composition o	ns in C lang outer progra n structures en call by va ory by the u create/upd	uage. am. s, loops and alue and call use of point ate basic da	functions. I by referen ers ta files.	
uter Programming Lab	CO3 CO4 CO5 CO6 CO7	Use differe Design prog Understand Understand Use differe PO1 3 3	nt data typo grams involo d the differed d the dynam nt data stru PO2 1	bug programes in a comparing decision ence between ics of memoratures and post of the post	ns in C lang outer progra n structures en call by va ory by the u create/upda PO4 1 1	uage. am. s, loops and alue and call use of point ate basic da PO5 2 2	functions. I by referen ers ta files.	
mputer Programming Lab	CO3 CO4 CO5 CO6 CO7	Use differe Design prog Understand Understand Use differe PO1 3 3 3 3	nt data type grams involud the different dithe dynam nt data stru PO2 1 3	bug programes in a comparing decision ence between ictures and ence programme for the programme for th	ns in C lang outer progra n structures en call by va ory by the u create/upd	uage. am. s, loops and alue and call use of point ate basic da PO5 2 2 2	functions. I by referen ers ta files.	
Computer Programming Lab	CO3 CO4 CO5 CO6 CO7 CO1 CO2 CO3 CO4	Use differe Design prog Understand Understand Use differe PO1 3 3 3 3 3	nt data type grams involud the differed the dynam nt data strue PO2 1 3 2	bug programes in a comparing decision ence between ics of memoratures and programme an	ns in C lang puter progra n structures en call by va ory by the u create/upds	uage. am. s, loops and alue and call use of point ate basic da PO5 2 2 2 2	functions. I by referencers ta files. PO6	
Computer Programming Lab	CO3 CO4 CO5 CO6 CO7 CO1 CO2 CO3 CO4 CO5	Use differe Design prog Understand Understand Use differe PO1 3 3 3 3 3 3 3	nt data type grams involved the difference of the dynam nt data structure PO2 1 3 2 3 3	bug programes in a compound decision de	ns in C lang puter programs tructures en call by valory by the coreate/upd	uage. am. s, loops and callue and callue ate basic da POS 2 2 2 2 2 3	functions. I by referencers ta files. PO6	
Computer Programming Lab	CO3 CO4 CO5 CO6 CO7 CO1 CO2 CO3 CO4 CO5 CO6	Use differe Design prog Understand Use differe PO1 3 3 3 3 3 3 3 3	nt data type grams involved the difference d the dynam nt data stru PO2 1 3 2 3 3 2	bug programes in a comparing decision ence between ics of memoratures and the second s	ns in C lang outer progra n structures en call by va ory by the u create/upds PO4 1 1 2 3 2 2	uage. am. s, loops and alue and call use of point ate basic da POS 2 2 2 2 3 2	functions. I by referencers ta files. PO6	
Computer Programming Lab	CO3 CO4 CO5 CO6 CO7 CO1 CO2 CO3 CO4 CO5	Use differe Design prog Understand Understand Use differe PO1 3 3 3 3 3 3 3	nt data type grams involved the difference of the dynam nt data structure PO2 1 3 2 3 3	bug programes in a compound decision de	ns in C lang puter programs tructures en call by valory by the coreate/upd	uage. am. s, loops and callue and callue ate basic da POS 2 2 2 2 2 3	functions. I by referencers ta files. PO6	

	Mat	CO1 CO2 CO3	3 3 Solve the so	n Eigen valu	ear equatio	n vectors.		- - oplications		
	Mat	C06 Target	3 3 Solve the sv	2 2 ystem of lin			- - yse their ap	- - pplications		
	Mat	C06 Target	3 3	2 2	-	-	-	-		
	Mat	C06	3	2	-	-	-	-		
	Mat				-	-	-	-		
	_					-	_	-		
	ie	C05	3		_					
	mat	C04	3	2	-	-	-	-		
	ics-	C03	3	2	-	-	-	-		
œ	=	C02	3	2	-	-	-	-		
161	Mat	C01	3	2	-	-	-	-		
R161202	Mathematics-II (Mathematical Methods)		PO1	PO2	PO3	PO4	PO5	PO6		
6 '	nati	-	TAPPIY I OUI	ici didilision	III3 to Evalue	ate imprope	i integrals			
	ca	CO5			ms to Evalua			пен аррис		
		CO4 CO5			<u> </u>			application their applic		
	tho	CO3						-		
	ds)	CO2	Understand the interpolation and extrapolation techniques Apply different numerical methods to Solve differential equations.							
		CO1					_	c & transcer		
	Ι	 CO1				6. 1				
		Target								
		C05	-	-	-	-	-	-		
		C04	-	-	-	-	-	-		
		C03	-	-	-	-	-	-		
	_	C02	-	-	-	-	-	-		
R16	English –II	C01	-	-	-	-	-	-		
R161201	ish .		PO1	PO2	PO3	PO4	PO5	PO6		
1	=		<u> </u>							
		CO5								
			_					er verhal info		
:01	=-	CO1 CO2 CO3 CO4 CO5	To write eff To improve To expand To improve	fectively us listening sl vocabulary life skills a	ind English sing appropri kills particul range and und core skill	iate format arly related ise it effecti s necessary	and transfe to Technica vely and gr for effectiv	al ar		

1
1
1
1
1
1
1
1
I

_	·-							
120	nati		PO1	PO2	PO3	PO4	PO5	PO6
R161		C01	3	2	-	-	-	-
_	Matl	C02	3	2	-	-	-	-
	_	C03	3	2	-	-	-	-
		C04	3	2	=	-	-	-
		C05	3	2	-	-	-	-

_										
		C06	3	2	-	-	-	-		
		Target	3	2						
		•		•		•		•		
		CO1	Students a	cquire the a	bilityto app	lyknowledg	eofInterfer	ence concep		
		CO2	Students a	cquire the a	bilityto app	lyknowledg	e of Diffrac	tion concep		
		CO3	Students w	ill be able t	o understar	nd the appli	cations of L	asers.		
		CO4	Knowledge	of EMW av	epropagati	on and its a	pplications	will be gaine		
		CO5	Studentsw	illbeabletod	levelopscier	ntificpointof	viewinsolvi	ngproblems		
	S	CO6	Students w	ill be able t	o design an	d analyse La	aws and pri	nciples of Se		
07	ıγsi									
R161207	I P		PO1	PO2	PO3	PO4	PO5	PO6		
R16	liec	C01	3	2	-	-	-	-		
	Applied Physics	C02	3	2	-	-	-	-		
	,	C03	3	2	-	-	-	-		
		C04	3	2	-	-	-	-		
		C05	3	2	-	-	-	-		
		C06	3	2	-	-	-	-		
		Target	3	2						
				!						
		CO1	Able to sol	Able to solve Various electrical networks in presence of active and page						
		CO2	Able to sol	ve any R, L,	C network v	with sinusoi	dal excitation	on.		
			T							

Electrical Circuit Analysis - I

R161208

R161206

CO1	Able to solve Various electrical networks in presence of active and pa
CO2	Able to solve any R, L, C network with sinusoidal excitation.
СОЗ	Able to solve any R, L, C network with variation of any one of the par
CO4	Able to solve any magnetic circuit with various dot conventions.
CO5	Able to solve electrical networks with network topology concepts.
CO6	Able to solve electrical networks by using principles of network theo

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	2			
C02	3	2	1			
C03	2	2	2	1		
C04	3	2	2	1		1
C05	3	2	3	1		1
C06	3	2	1	1		

Engineering Drawing

CO1	To draw various Engineering curves & polygons.
CO2	To understand different scales used in the industry, to recognize prin
CO3	To interpret the projection principles to draw projections of straight
CO4	To understand the various ways to draw projections of planes.
CO5	To draw the projections of solids by applying principles of Orthograp
CO6	To convert isometric views into orthographic views and vice versa.
	·

	PO1	PO2	PO3	PO4	PO5	PO6
C01	1	1	1	-	-	-
C02	2	2	2	-	-	-
C03	2	2	2	-	-	-

C04	2	2	2	-	-	-
C05	2	2	2	-	-	-
C06	3	3	3	-	-	-
Target	2	2	2			

English - Communication Skills Lab – 2

CO1	prioritize information from reading texts after selecting relevant and
CO2	make formal structured presentations on academic topics using PPT
CO3	participate in group discussions using appropriate conventions and la
CO4	prepare a CV with a cover letter to seek internship/ job (L2)
CO5	collaborate with a partner to make presentations and Project Report

	PO1	PO2	PO3	PO4	PO5	PO6
C01	-	-	-	-	-	-
C02	-	-	-	-	-	-
C03	-	-	-	-	-	-
C04	-	-	-	-	-	-
C05	-	-	-	-	-	-
Target						

Applied / Engineering Physics Lab

Students Acquire ability to apply knowledge of Interference concept
Students Acquire ability to apply knowledge of Interference concept
Students will be able to understand the applications of Lasers
Knowledge of Acoustics of buildings and NDT applications will be gai
Students will be able to understand the material properties and nucl
Students will acquire sufficient knowledge of the various application

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	3	2	2	-
C02	2	2	2	3	2	-
C03	3	2	2	2	3	-
C04	2	2	3	3	3	ı
C05	3	2	3	2	2	-
C06	3	3	2	2	1	-
Target	2.67	2.33	2.5	2.33	2.17	·

KSHOP & IT WORKSHOP

CO1	To select suitable carpentry tools to prepare different types of joints
CO2	To identify tools required in the fitting operation to perform joint pro
соз	To understand the process of making different objects with thin sheet
CO4	To differentiate single phase, 3 phase wiring connections.
CO5	Identify the basic computer peripheral and gain sufficient knowledge
CO6	Learn the installation procedure of Windows and Linux OS,
CO7	Acquire knowledge on basic networking infrastructure and acquire k
CO8	Learn productivity tools like Word, Excel and Power point.

PO1	PO2	PO3	PO4	PO5	PO6

OR	C01	2	-	1	-	-	1
_	C02	2	1	-	-	-	1
N	C03	2	1	-	-	-	1
ENGINEERIN	C04	1		-	-	-	1
NI9	C05	2	1	-	-	2	-
EN	C06	2	2	-	2	2	-
	C07	1	1	1	1	2	-
	C08	1	2	-	-	2	-

							II Yea	r – I Sen		
		CO1	Students are able to solve three- phase circuits under balanced cond							
21 Analysis - II	CO2	Students are able to solve three- phase circuits under unbalanced co								
	соз	Students are able find out transient response of electrical networks								
	CO4	Students a	re able to e	stimate the	different ty	pes of two	port networ			
	CO5	Students a	re able to re	epresent ele	ctrical equi	valent netw	ork for a giv			
	nal	CO6	Students a	re able to e	xtract differ	ent harmon	ics compon	ents from tl		
.02										
R1621021	Circuit		PO1	PO2	PO3	PO4	PO5	PO6		
		C01	2	2	-	-	-	-		
Electrical	C02	2	2	-	-	-	-			
	ect	C03	1	2	-	-	-	-		
	_ =	C04	2	2	_	_	-	_		

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	-	-	-	-
C02	2	2	-	-	-	-
C03	1	2	-	-	-	-
C04	2	2	-	-	-	-
C05	2	2	_	-	-	-
C06	2	1	-	-	-	-

		CO1	Able to ass	imilate the	concepts of	electromed	chanical ene	ergy convers		
	CO2	Able to mit	igate the ill	-effects of a	rmature re	action and i	mprove con			
		соз	Able to und	derstand the	e torque pro	oduction me	echanism ar	nd control th		
_	CO4	Able to ana	Able to analyze the performance of single phase transformers.							
	es-I	CO5	Able to pre	determine	regulation,	losses and e	efficiency of	single phas		
7	hin	CO6	Able to par	allel transfo	rmers, con	trol voltage	s with tap c	hanging me		
R1621022	Electrical Machines-l									
[62]	<u>a</u>		PO1	PO2	PO3	PO4	PO5	PO6		
22	ri:	C01	3	3	1	2	-	-		
	led 	C02	3	2	3	2	-	-		
		C03	3	2	2	2	-	-		
	C04	3	2	3	3	-	-			
		C05	2	2	2	3	-	-		
		C06	2	3	3	1	-	-		
		•		•						

CO1	To Determine electric fields and potentialsusing guass's lawor solving
CO2	To Calculate and design capacitance, energy stored in dielectrics.

соз To Calculate the magnetic field intensity due to current, the applicat To determine the magnetic forces and torque produced by currents CO4 **Electro Magnetic Fields** CO5 To determine self and mutual inductances and the energy stored in t To calculate induced e.m.f., understand the concepts of displacemer CO6 R1621024 **PO4 PO1** PO₂ **PO3** C01 C02 C03 C04

C05 C06

C05

C06

	1	CO1	Classify the	heat engin	as underst	tand the wo	rking princi	nles of IC or		
		Classify the heat engines , understand the working principles of IC e								
	۷ ا	CO2	Discuss about the properties of steam, analysis of ranking cycle and							
	Movers	CO3	Understand and analysis of Gas turbines							
ii.	CO4	Identify the significance of impulse momentum equation, understan								
	CO5	Classify, w	orking & de	sign princip	les of hydra	ulic turbine	including it			
	CO6	Understand	d about hyd	lro-electric _l	power plant	and calcula	ation of diffe			
102										
.62	Hydro		PO1	PO2	PO3	PO4	PO5	PO6		
2	5	C01	3	1	1	0	0	0		
<u>a</u>	C02	2	2	3	3	2	0			
	l ma	C03	3	0	0	3	3	0		
R Thermal and	C04	2	2	2	2	3	0			
	-	COE	2	2	2	2	1	0		

PO6

PO5

-

	s	CO1	Understand	ding basics (of Manageri	ial Economi	cs and conc	epts of dem			
	ılys	CO2	Remembering the concepts of production & cost and applying break								
	√na	CO3	Analyzing o	Analyzing different market structures to determine pricing.							
	al /	CO4	Evaluating	different fo	rms of busii	ness organiz	zation.				
	anci	CO5	Applying a	ccounting p	rinciples to	know the fi	nancial posi	tion of the k			
	Financial Analysis	CO6	Create awa	reness abo	ut capital bi	udgeting me	ethod to de	termine pro			
R1621026	જ		•								
621	nics		PO1	PO2	PO3	PO4	PO5	PO6			
R1	nor	C01	-	-	-	-	-	-			
	Economics	C02	-	2	-	-	-	-			
	ial	C03	-	-	-	-	-	-			
	ger	C04	-	-	-	-	-	3			
	Managerial	C05	-	-	2	2	-	-			
	Σ	C06	-	-	-	2	2	-			

Electrical Circuits Laboratory

CO1	Able to experimentally verify the basic circuit theorems.
CO2	Able to draw the locus diagrams, waveforms and phasor diagrams fo
соз	Able to determine the two port parameters of a given electric circuit
CO4	To measure power and power factor in 3- phase circuit for unbalance
CO5	Able to know the resonance condition of a given network.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	2	2		2
C02	2	1	1	1		2
C03	2	2	1	1		1
C04	2	2	2	1		2
C05	2	1	2	1		1

II Year - II Sen

Electrical Measurements

R1622021

R1622022

CO1	Able to choose right type of instrument for measurement of voltage
CO2	Able to choose right type of instrument for measurement of power a
соз	Able to calibrate ammeter and potentiometer.
CO4	Able to select suitable bridge for measurement of electrical paramet
CO5	Able to use the ballistic galvanometer and flux meter for magnetic m
CO6	Able to measure frequency and phase difference between signals us

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2				1	
C02	2	1	1		1	
C03	1					
C04	3	2				
C05	2					
C06	2	1	1		1	

Electrical Machines-II

CO1	Able to explain the operation and performance of three phase induc
CO2	Able to analyze the torque-speed relation, performance of induction
CO3	Able to explain design procedure for transformers and three phase in
CO4	Implement the starting of single phase induction motors.
CO5	To perform winding design and predetermine the regulation of syncl
CO6	Avoid hunting phenomenon, implement methods of staring and corr

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2			1	
C02	2	3			1	
C03	3	1			1	
C04	2	3				
C05	2	2				
C06	2	1			1	

	CO1	To Underst	and the dif	ferent numl	oer systems	, binary arit	hmetic ope		
_	CO2	To Apply di R1622023							
ign	CO3	To Evaluate the combinational logic circuits: Decoder, Encoder, Mult							
Des	CO4	To Memorize the combinational circuit design procedure and Apply 1							
gic	CO5	To Analyze an element, different latches, flip-flops, registers and Des							
	CO6	To Analyze	an elemen	t, different l	atches, flip-	flops, regist	ers and Des		
pue									
		PO1	PO2	PO3	PO4	PO5	PO6		
heo	C01	-	2	-	-	-	-		
E T	C02	-	-	2	-	-	-		
hin	C03	-	-	3	-	-	-		
wit	C04	_	3	-	-	-	_		
	witching Theory and Logic Design	co2 Co3 Co4 Co5 Co6	CO2 To Apply di CO3 To Evaluate CO4 To Memori CO5 To Analyze CO6 To Analyze	CO2 To Apply di R1622023 CO3 To Evaluate the combi CO4 To Memorize the com CO5 To Analyze an element CO6 To Analyze an element	CO2 To Apply di R1622023 CO3 To Evaluate the combinational log CO4 To Memorize the combinational c CO5 To Analyze an element, different l CO6 To Analyze an element, different l	CO2 To Apply di R1622023 CO3 To Evaluate the combinational logic circuits: I CO4 To Memorize the combinational circuit design CO5 To Analyze an element, different latches, flip- CO6 To Analyze an element, different latches, flip-	CO2 To Apply di R1622023 CO3 To Evaluate the combinational logic circuits: Decoder, En CO4 To Memorize the combinational circuit design procedure CO5 To Analyze an element, different latches, flip-flops, regist CO6 To Analyze an element, different latches, flip-flops, regist		

C05

C06

C04

CO6

Power Systems-I

R1622025

3

		CO1	Ability to derive the transfer function of physical systems and detern								
		CO2	Capability t	o determin	e time resp	onse specifi	cations of s	econd orde			
		соз	Acquires th	e skill to an	alyze absol	ute and rela	tive stabilit	y of LTI syst			
	CO4	Capable to analyze the stability of LTI systems using frequency respo									
	s	CO5	Able to design Lag, Lead, Lag-Lead compensators to improve system								
4	em	CO6	Ability to re	epresent ph	ysical syste	ms as state	models and	determine			
:02	yst										
R1622024	ol S		PO1	PO2	PO3	PO4	PO5	PO6			
R 1	Control Systems	C01	2	2	3	0	-	0			
	ပ	C02	3	2	2	2	-	1			
		C03	3	2	3	2	-	1			
		C04	2	2	2	2	1	1			

C06	2	2	1	1	-	U		
CO1	Students a	re able to ic	lentify the c	lifferent cor	nponents o	f thermal pc		
CO2	Students are able to identify the different components of nuclear Po							
соз	Students a	re able to d	istinguish b	etween AC/	DC distribut	tion systems		
CO4	Students a	re able to ic	lentifythe d	ifferent con	nponents of	air and gas		
CO5	Students a	re able to ic	lentifysingle	core and m	nulti core ca	bles with di		

Students are able to analyzethe different economic factors of power

3

3

PO1	PO2	PO3	PO4	PO5	PO6
2	2				
2	2				
3	3	1			
2	2		1		
3	1				
	PO1 2 2 3 2 3 2	PO1 PO2 2 2 2 2 3 3 3 2 2 3 1	PO1 PO2 PO3 2 2 2 2 3 3 1 2 2 3 1	PO1 PO2 PO3 PO4 2 2 2 2 3 3 1 2 2 1 3 1	PO1 PO2 PO3 PO4 PO5 2 2 2 2 2 2 3 1 3 3 1 3 1 3 3 1 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 <td< th=""></td<>

Understanding basics of management and organization. CO1 CO2 Remembering principles of management and applying the concepts Analyze the functions of HRM and marketing. соз Applying PERT & CPM techniques to solve project management prob CO4 Management Science Evaluating SWOT Analysis for formulating and implementing strategi CO5 Creating awareness about modern or contemporary management pr CO6 R1622026 **PO1** PO₂ **PO3 PO4 PO5 PO6** C01 C02 C03 2 C04 C05 2 C06 To determine and predetermine the performance of DC machines. CO1 CO2 To control the speed of DC motor. Electrical Machines -I СОЗ To determine and predetermine the performance of Transformer. CO4 To achieve three phase to two phase transformation. Laboratory **PO5 PO1** PO₂ **PO3 PO4 PO6** C01 2 1 2 1 1 2 C02 1 2 1 1 C03 2 2 1 1 1 2 1 1 1 CO1 Able To understand the characteristics of PN Junction and Zenor diod Able To draw the characteristics of BJT, FET, SCR and UJT CO2 **Electronic Devices & Circuits** Able To Analyze the applications of PN Junction as Rectifier CO3 Able To analyze the operation of BJT and FET as a amplifier CO4 CO5 Able To understand the operation of CRO Laboratory **PO1** PO₂ **PO3 PO4 PO5 PO6** 2 1 1 1 1 C02 2 1 1 1 1 C03 2 1 1 1 1 2 1 1 1 1 C05 2 1 1 1 1 III Year - I Sen CO1 Able to understand parameters of various types of transmission lines

Able to understand the performance of short and medium transmiss CO2 Able to understand the performance of Long transmission lines. CO3 Student will be able to understand travelling waves on transmission CO4 Will be able to understand various factors related to charged transm CO5 Power Systems-II Will be able to understand sag/tension of transmission lines and per-CO6 R1631021 **PO1** PO₂ **PO3 PO4 PO5** C01 2 3 3 C02 3 1 C03 1 3 1 C04 1 1 0

1

3

2

3

3

3

C05

C06

C04

C05

C06

C03

C04

C05

		CO1	Analyze so	lar radiatior	n data, extra	terrestrial i	radiation, ar	nd radiation
		CO2	Design sola	r thermal c	ollectors, sc	lar thermal	plants.	
		соз	Design sola	r photo vol	taic systems	S.		
	Sources	CO4	Develop m	aximum po	wer point te	chniques in	solar PV ar	nd wind ene
	l no	CO5	Explain wir	nd energy co	onversion sy	stems, win	d generator	rs, power ge
7	S &	CO6	Explain bas	sic principle	and workin	g of hydro,	tidal, bioma	ss, fuel cell
102	Energy							
R1631022			PO1	PO2	PO3	PO4	PO5	PO6
2	Renewable	C01	3	3				
	l Š	C02	1	2				
	[en	C03	1	2				
	4	004	_	_				

2

2

3

2

3

0

3

PO6

	Si									
	gu	C02	3	_	2	_	_	_		
8	Signals	C01	3	3	_	-	-	-		
:69]	and		PO1	PO2	PO3	PO4	PO5	PO6		
R1631023	l Sy		•							
c	Systems	CO6	Calculate z	-transform	to analyze d	iscrete-time	e signals an	d systems, a		
	ms	CO5	Compute L	aplace trans	sforms to ar	nalyze conti	nuous time	signals and		
		CO4	Classify sys	tems based	on their pr	operties an	d determine	the respor		
		CO3	Apply samp	oling theore	m to conve	rt continuo	us-time sign	als to discre		
		CO2	Analyse the	e continuou	s-time signa	als and cont	inuous-time	e systems us		
		CO1	Describe signals mathematically and understand how to perform diff							

2

3

3

		CO1	Understand	d and Apply	the concep	ot of linear v	vave shapin	g circuits lik	
		CO2					ike clippers		
		соз	Examine th	e switching	characteris	stics of nonl	inear eleme	nts used in	
	ر د	CO4	Create the	different ty	pes of mult	ivibrator cir	cuits.		
	Circuits	CO5	Evaluate different types of voltage and current time base generators						
4	Circ	CO6	Illustrate th	ne principle	s of synchro	nisation an	d frequency	division an	
R1631024	Digital (
631	jgi		PO1	PO2	PO3	PO4	PO5	PO6	
R1	∞	C01	1	3	1	-	-	-	
	Pulse	C02	1	3	-	-	-	-	
	2	C03	1	2	3	-	-	-	
		C04	1	2	3	-	-	-	

-

2

-

-

-

1

1

-

C05

C06

C05

C06

-

3

2

		CO1	Explain the	characteris	stics of vario	ous power s	emiconduct	or devices a		
		CO2	Design firin	g circuits fo	or SCR.					
		соз	Explain the operation of single phase full-wave converters and analy							
		CO4	Explain the operation of three phase full–wave converters.							
S	CO5	Analyze the operation of different types of DC-DC converters.								
5	oni	CO6	Explain the operation of inverters and application of PWM technique							
102	Electronics									
R1631025	#		PO1	PO2	PO3	PO4	PO5	PO6		
~	Power	C01	2	1	1			1		
	Po P	C02	2	2	2			1		
		C03	3	2	3			1		
		C04	2	2	2			1		

<u>lect</u>	C02	2	1	1	1	1	
rical Labo	C01	2	1	1	1	1	
M I		PO1	PO2	PO3	PO4	PO5	PO6
Electrical Machines-	CO4	Able to find	d the Xd/ Xo	ratio of alt	ernator and	l asses the p	erformano
es-I	CO3			the regulati			
_	CO2			eed of three	·		
	CO1	Able to ass	ess the per	formance of	single phas	se and three	phase inc

2

2

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1	1	1	1	
C02	2	1	1	1	1	
C03	2	1	1	1	1	
C04	2	1	1	1	1	

2

1

Control Systems Laboratory

CO1	Able to analyze the performance and working Magnetic amplifier, D.
CO2	Able to design P, PI, PD and PID controllers and design lag, lead and I
CO3	Able to control the temperature using PID controller and determine
CO4	Able to control the position of D.C servo motor performance

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1	-	1	1	
C02	2	1	1	1	1	
C03	1	-	-	-	1	
C04	1	1	1	1	1	

Electrical Measurements Laboratory

CO1	To be able to measure accurately the electrical parameters voltage,
CO2	To be able to measure illumination of electrical lamps.
CO3	To be able to test transformer oil for its effectiveness.
CO4	To be able to measure the parameters of inductive coil.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1				
C02	1	1				
C03	1	1				
C04	1			1		

IPR & Patents

CO1	Understanding, defining and differentiating different types of intelle
CO2	Understanding the Framework of Strategic Management of Intellect
CO3	Identify different types of Intellectual Properties (IPs), the right of ov
CO4	Recognize the crucial role of IP in organizations of different industria
CO5	Identify activities and constitute IP infringements and the remedies a
CO6	Understanding, Identify various cybercrimes in online networks

	PO1	PO2	PO3	PO4	PO5	PO6
C01	-	2	3	2	2	2
C02	-	2	3	1	2	2
C03	-	1	2	-	3	3
C04	1	3	3	2	2	2
C05	-	-	3	-	2	-
C06	-	2	2	-	-	2

ers & Drives

	III Year – II Ser
CO1	Explain the fundamentals of electric drive and different electric brak
CO2	Analyze the operation of three phase converter fed dc motors and fc
соз	Describe the converter control of dc motors in various quadrants of
CO4	Know the concept of speed control of induction motor by using AC v
CO5	Differentiate the stator side control and rotor side control of three p

0	ı =	CO6	Lxpiaiii tiic	speed con	trol mechan	iisiii oi syiic		
R1632021	Cor		PO1	PO2	PO3	PO4	PO5	PO6
R1	onic	C01	2	3	3			
R1632021	ţ	C02	3	3	1			
	==	C03	1	3	1			
	wer	C04	1	1	0			
	Po	C05	1	2	0			
		C06	3	3	3			
	I	lana	Abla ta dua	:	di	f		مام مام مام
		CO1		•		•	r system net	
		CO2					m networks	
		CO3					a power sys	
	/sis	CO4	Able to find				rents for unl	
	nal	CO5		•	•		d dynamic s	
R1632022	Power System Analysis	-	Able to alla	iyze the st	sauy state, t	i alisielit ali	iu uynannic s	cability
1632	/ste		PO1	PO2	PO3	PO4	PO5	PO6
22	l S	C01	3	1	2			
) Š	C02	2	2	1			
	 	C03	2	1	2			
		C04	2	2	1			
		C05	1	1	2			
		C06	2	1	2			
	ro controllers	CO1 CO2 CO3 CO4	Able to und Able to und Able to und	erstand therstand therstand therstand therstood the	e addressing e IO interface e 8051 micr e concepts	g modes of cing with 80 to controller of PIC18 far	microproce	e.
023		CO2 CO3 CO4	Able to und Able to und Able to und Able to und	erstand therstand therstand therstand therstood the	e addressing e IO interfac e 8051 micr	g modes of cing with 80 to controller of PIC18 far	microproces 086 MP. r architectur	e.
632023		CO2 CO3 CO4 CO5	Able to und Able to und Able to und Able to und Able to dev	erstand therstand therstand therstand therstood the	e addressing e IO interface e 8051 micr e concepts	g modes of cing with 80 to controller of PIC18 far	microproces 086 MP. r architectur	e. erchitect
R1632023		CO2 CO3 CO4 CO5	Able to und Able to und Able to und Able to und Able to dev	erstand th erstand th erstand th erstood th elop c prog	e addressing e IO interface e 8051 micr e concepts grams for Plo	g modes of cing with 80 to controller of PIC18 far C18	microproces 086 MP. r architectur nily and its a	e. erchitect
R1632023		CO2 CO3 CO4 CO5 CO6	Able to und Able to und Able to und Able to und Able to dev	erstand th erstand th erstand th erstood th elop c prog	e addressing e IO interface e 8051 micr e concepts grams for Plo	g modes of cing with 80 to controller of PIC18 far C18	microproces 086 MP. r architectur nily and its a	e. erchitect
R1632023		CO2 CO3 CO4 CO5 CO6	Able to und Able to und Able to und Able to und Able to dev PO1 2	erstand the erstand the erstand the erstood the elop c prog	e addressing e IO interface e 8051 micr e concepts grams for Plo	g modes of cing with 80 to controller of PIC18 far C18	microproces 086 MP. r architectur nily and its a	e. erchitect
R1632023		CO2 CO3 CO4 CO5 CO6	Able to und Able to und Able to und Able to und Able to dev PO1 2 2	erstand the erstand the erstand the erstood the elop c progery	e addressing e IO interface e 8051 micr e concepts of grams for Plo	g modes of cing with 80 to controller of PIC18 far C18	microproces 086 MP. r architectur nily and its a	e. erchitect
R1632023		CO2 CO3 CO4 CO5 CO6	Able to und Able to und Able to und Able to und Able to dev PO1 2 2 2 2	erstand the erstand the erstand the erstand the elop c progen	e addressing e IO interface e 8051 micr e concepts of grams for Plo	g modes of cing with 80 to controller of PIC18 far C18	microproces 086 MP. r architectur nily and its a	e. erchitect
R1632023	Micro Processors and Micro controllers	CO2 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4	Able to und Able to und Able to und Able to und Able to dev PO1 2 2 2 2 2	erstand the erstand the erstand the erstand the elop c progen	e addressing e IO interface e 8051 micr e concepts of grams for Plo	g modes of cing with 80 to controller of PIC18 far C18	microproces 086 MP. r architectur nily and its a	e. erchitect
R1632023		CO2 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4 CO5	Able to und Able to und Able to und Able to und Able to dev PO1 2 2 2 2 2 2 2	erstand the erstand the erstand the erstand the erstand the elop c progery PO2 1 2 2	e addressing e IO interface e 8051 micr e concepts of grams for Plo	g modes of cing with 80 to controller of PIC18 far C18	microproces 086 MP. r architectur nily and its a	e.
R1632023		CO2 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4 CO5	Able to und Able to und Able to und Able to und Able to dev PO1 2 2 2 2 2 2 2 Able to und	erstand the erstand the erstand the erstand the erstand the elop c program and the erstand th	e addressing e IO interface e 8051 micr e concepts of grams for Plo PO3 2 2 2	g modes of cing with 80 to controller of PIC18 far C18	PO5 Postures and	e. architect PO6
R1632023		CO2 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4 CO5 CO6	Able to und Able to und Able to und Able to und Able to dev PO1 2 2 2 2 2 2 2 Able to und	erstand the erstand the erstand the erstand the erstand the elop c program and the erstand th	e addressing e IO interface e 8051 micr e concepts of grams for Plo PO3 2 2 2	g modes of cing with 80 to controller of PIC18 far C18	microproces 086 MP. r architectur nily and its a	e. architect PO6

CO5 Able to applydata structures into the applications such asgraphs. Data Structures CO6 Able to compare and contrast various searching and sorting techniqu R1632024 **PO1** PO₂ **PO3 PO4 PO6 PO5** 2 C01 3 3 2 C02 C03 2 3 2 2 C04 2 3 2 C05 2 3 2 2 C06

Neural Networks & Fuzzy Logic

R163202E

To understand artificial neuron models.

To understand learning methods of ANN.

To utilize different algorithms of ANN.

To distinguish between classical and fuzzy sets.

To understand different modules of fuzzy controller.

To understand applications of neural networks and fuzzy logic.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2				
C02	3	2				
C03	3	3				
C04	3	2				
C05	2	3				
C06	2	3				

Power Electronics Laboratory

Able to study the characteristics of various power electronic devices

Able to analyze the performance of single phase and three phase ful

Able to understand the operation of single phase AC voltage regulate

Able to understand the working of Buck converter, Boost converter,

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	1				
C02	2	1				
C03	2	1				
C04	1	1				

orocessors & ocontrollers boratory

CO1	Understand and apply the fundamentals of assembly level programn
CO2	Design interfacing circuits with 8086
соз	Design and implement 8051 microcontroller based systems

PO1	PO1	PO2	PO3	PO4	PO5	PO6
-----	-----	-----	-----	-----	-----	-----

crop licro	001			1	
1	CO2			1	
С	203			1	

Data Structures Laboratory

CO1	Implement linear and non-linear data structures using arrays and linl
CO2	Understand and apply various data structure such as stacks, queues,
CO3	Identify and use a suitable data structure and algorithm to solve a re
CO4	Implement various kinds of searching and sorting techniques, and de

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	-	3	-	-	-
C02	1	-	2	3	-	-
C03	1	2	3	1	-	-
C04	1	2	2	1	-	-

Professional Ethics & Human Values

CO1	Able to introduce the basic philosophy of morals, values and ethics t
CO2	Able to impart reasoning and analytical skills needed to apply ethical
соз	Able to identify the moral issues involved in both management and ϵ
CO4	Able to understand the unethical errors committed by the engineers
CO5	Able to minimize the occupational crimes in the corporate sector by
CO6	Able to Focus on intellectual property rights and ethical engineering.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	1	ı	ı	1	1	-
C02	2	-	-	2	1	-
C03	1	-	-	3	1	-
C04	2	-	-	1	2	-
C05	2	-	-	1	1	-
C06	1	-	-	1	2	-

Utilization of Electrical Energy

R1641021

IV Year – I Sen

C	01	Able to identify a suitable motor for electric drives and industrial app
		Able to identify most appropriate heating or welding techniques for
C	D3	Able to understand various level of illuminosity produced by differen
C	04	Able to estimate the illumination levels produced by various sources
		Able to determine the speed/time characteristics of different types of
C	D 6	Able to estimate energy consumption levels at various modes of ope

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2				
C02	2	2				
C03	3	3	1			
C04	2	2		1		

C05	3	1			
C06	2	2	1	1	

R1641022
Linear IC Applications

CO1	Able to understand the performance parameters of differential amp
CO2	Able to understand & learn the measuring techniques of performand
соз	Able to learn the linear and non-linear applications of operational ar
CO4	Able to understand the analysis & design of different types of active
CO5	Able to learn the internal structure, operation and applications of PL
CO6	Able to Understand the conversion circuits ADC and DAC IC's.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	3	-	1	2	-
C02	3	2	-	-	2	-
C03	3	2	3	2	2	-
C04	2	3	2	2	2	-
C05	2	-	-	2	-	-
C06	2	-	-	1	2	

Power System Operation & Control

R1641023

R1641024

CO1	Able to compute optimal scheduling of Generators.
CO2	Able to understand hydrothermal scheduling.
соз	Understand the unit commitment problem.
CO4	Able to understand importance of the frequency.
CO5	Understand importance of PID controllers in single area and two are
CO6	Will understand reactive power control and compensation for transr

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	1	1	-	-
C02	3	2	1	1	-	-
C03	2	1	-	-	-	-
C04	2	1	-	-	-	-
C05	2	2	-	-	-	-
C06	3	2	-	_	-	-

tchgear and Protection

CO1	Able to understand the principles of arc interruption for application
CO2	Ability to understand the working principle and operation of differer
соз	Students acquire knowledge of faults and protective schemes for hig
CO4	Improves the ability to understand various types of protective schen
CO5	Able to understand different types of static relays and their applicati
CO6	Able to understand different types of over voltages and protective so
	•

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	2	2	2	1
C02	3	3	3	3	1	1

, C03	3	2	2	2	2	2
C04	2	2	2	3	2	1
C05	3	2	3	2	-	1
C06	2	2	3	2	2	2

		CO1	Able to represent various types of signals .							
		CO2	Acquire proper knowledge to use various types of Transducers.							
		соз	Able to monitor and measure various parameters such as strain, velo							
		CO4	orking princ	iple of vario	us types of					
	Ξ.	CO5	Able to measure various parameter like phase and frequency of a sig							
Ω	ntation	CO6	Acquire pro	per knowle	edge and ab	le to handle	various typ	oes of signal		
102	inta		•							
R164102D	PO5	PO6								
R 1	2	1								
	Instr	C02	3	3	3	3	1	1		

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	2	2	2	1
C02	3	3	3	3	1	1
C03	3	2	2	2	2	2
C04	2	2	2	3	2	1
C05	3	2	3	2	-	1
C06	2	2	3	2	2	2

C04	1	1 1	1	1	1				
C03	3	2	2	2	1				
C02	3	2	1	2	2				
C01	2		1	2	2				
	PO1	PO2	PO3	PO4	PO5	PO6			
	Jo. del Stari	G 2 3181111							
CO6	Understan	Understand the significance of electrical motors for traction drives.							
CO5	Explain the	theory of t	ravelling ma	agnetic field	and applic	ations of li			
CO4	Explain the	eory of oper	ation and co	ontrol of sw	itched reluc	ctance mot			
соз	Explain the	e performan	ice and cont	rol of stepp	er motors,	and their a			
CO2	Distinguish	n between b	rush dc mot	tor and brus	sh less dc m	otor.			
CO1	Understan	Understand the concepts of Permanent magnet materials and PM							

R16412026

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2		1	2	2	
C02	3	2	1	2	2	
C03	3	2	2	2	1	
C04	3	2	1	2	1	
C05	3	2	2	2	2	
C06	2	1	1	2	2	

		CO1	Able To Simulate Single Phase Full Bridge Converter & Transient Resp
		CO2	Able ToSimulate Modeling Of Transformer &lossy transmission line.
		CO3	Able To SimulateSingle Phase Ac Voltage Controller.
		CO4	Able To SimulateSingle Phase Inverter With PWM Control.
) c	CO5	Able To Simulate Buck Chopper.
	Laboratory	CO6	Able ToSimulateIntegrator and differentiator.
	oq	CO7	Able To Find the Stability of a Given System & Load flow analysis by
2		CO8	Able To Simulate Three Phase Full Bridge Converter.
2027	tion		

R1641	Simula		PO1	PO2	PO3	PO4	PO5	PO6
R1	Sim	C01	3	3	2	2	2	
		C02	2	2	2	2	1	
	Electrical	C03	3	2	2	2	2	
	Elec	C04	2	2	2	3	2	
		C05	2	2	1	2	2	
		C06	2	1	2	3	2	
		C07	3	2	3	2	2	
		C08	2	2	2	3	2	

R16412028
Power Systems Laboratory

C	01	Able to understand the power flows and stability in power system.
C	02	Students can execute energy management systems functions at load
C	О3	Able to understand affect of various faults in various power system c
C	04	Able to determine the parameters of various power system component

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	2	2	2	
C02	2	2	2	2	2	
C03	1	1	1	1		
C04	1	2				

Digital Control Systems

	IV Year – II Ser
CO1	Ability to understand the sampling theorem
CO2	Learn how to calculate the Z-transforms
соз	Ability to solve the discrete time state space equations, checking cor
CO4	Learn how to check the stability of discrete time systems
CO5	Ability to design using frequency response in the w-plane for lag and
CO6	Students can design a controller and observer through pole placeme

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	3	0	-	0
C02	3	2	2	2	-	1
C03	3	2	3	2	-	1
C04	2	2	2	2	1	1
C05	3	2	1	1	-	0
C06	2	2	1	1	-	0

CO1	To Understand the basic concepts of HVDC systems
CO2	To Analyze the operation of HVDC converters
соз	To Know the control characteristics of DC
CO4	To acquire control concept of reactive power control and AC/DC load
CO5	To Understand converter faults, protection and harmonic effects
CO6	To Design low pass and high pass filters

642	ran		PO1	PO2	PO3	PO4	PO5	PO6
R16	C	C01	1	1	1	1	О	0
	ļ Š	C02	1	2	1	2	1	0
	-	C03	1	2	1	2	2	0
		C04	1	2	2	2	2	0
		C05	1	2	2	2	2	0
		C06	1	2	2	2	2	0

Electrical Distribution Systems

CO1	Ability to understand the different distribution system and classificat
CO2	Ability to design distribution feeders and optimal location of substati
соз	Able to derive voltage drop and power loss in lines, to know the diffe
CO4	Able to know the co-ordination of protective devices.
CO5	Able to know compensation for power factor improvement.
CO6	Able to know equipment for voltage controller.

	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	3	3			
C02	3	3	1			
C03	1	3	1			
C04	1	1				
C05	1	2				
C06	3	3	3			

Flexible Alternating Current Transmission Systems

CO1	Determine power flow control in transmission lines by using FACTS c
CO2	Explain operation and control of voltage source converter.
CO3	Discuss compensation methods to improve stability and reduce pow
CO4	Explain the method of shunt compensation by using static VAR comp
CO5	Appreciate the methods of compensations by using series compensa
CO6	Explain the operation of modern power electronic controllers (Unific

	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	-	1	1	-
C02	2	1	-	1	1	-
C03	2	2	-	-	1	
C04	2	2	1	-	1	-
C05	2	2	1	1	1	-
C06	3	1	-	-	1	-

CO1	Access information in a variety of ways, by using library collections a
CO2	Demonstrate effective writing skills by employing various techniques
соз	Understand the role that effective presentations have in public/prof
CO4	Demonstrate the ability to collaborate with others as they work on r
	·

l <u>i</u>		PO1	PO2	PO3	PO4	PO5	PO6
Se	C01	3	2	-	3	-	-
	C02	-	-	-	-	-	-
	C03	3	-	-	-	-	-
	C04	2	-	=	2	2	=

		C02	2	2	2	2		2	
	-	C01	3	2	2			·	
	Project		PO1	PO2	PO3	PO4	PO5	PO6	
		CO5	Able to identify one's need for updating skills and know						
CO4 Able to document and present one's own work for							rk for a give	n target gro	
		CO3	Able to refl	ect on, eva	luate, and c	ritically asse	ess one's ov	n results ar	
		CO2	Able to ind	ependently	analyse and	d discuss co	mplex inqui	ries/proble	
		CO1	Able to acquire the requisite skills and to apply the same to a given						

C03

C04

C05

JTE OF TECHNOLOGY

ECTRONCIS ENGINEERING

TRIX

EM

ocial or transactional dialogues spoken by native speakers of English (L3)

<u>ct</u> word forms and take notes while listening to a talk/lecture to answer questions (L3) nformal discussions (L3)

g texts (L3)

le (L4)

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
		2	3		1		

se their applications.

d its applications.

ial differential equations

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
					1		

compounding and reframing &fabrication of polymers, plastics and

c value determination, Ranking and Analysis of coal by proximate and ultimate methods cells, electrode potentials, concentration cells, rechargeable batteriesApplytheknowledge er conductors and Illustrate the applications of cleaner and greener synthetic methods is of ultra pure semiconductors, working of rectifiers and transistors, insulating materials, of photovoltaic cell, design of hydropower plant, tidal power, geothermalenergy, bio gas

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	2	-	-	-
-	-	-	-	2	2	-	-
-	-	-	-	1	3	-	-
-	-	-	-	1	3	-	-

-	-	-	-	1	1	-	-
-	-	-	-	1	2	-	-
				1.33	2.2		

plication.

blems using graphical methods and law of triangle forces.

of inertia including transfer methods and their applications.

ear path, its velocity and acceleration computation and methods of representing plane

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	2	-	-
-	-	-	-	-	2	-	-
-	-	-	-	-	2	-	-
-	-	-	-	-	2	-	-
-	-	-	-	-	2	-	-
-	-	-	-	-	2	-	-
					2		

ic solutions to problems	lems.	prob	to	lutions	so	ic
--------------------------	-------	------	----	---------	----	----

t

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	2
-	-	-	-	-	-	2	2
-	-	-	-	-	-	2	2
-	-	-	-	-	-	2	2
						2	2

,and Applyconservation practices

aluatethe stages involved in EIA

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	-	-	-	-	3	-	-

3	-	-	-	-	3	-	-
3	-	-	-	-	3	-	-
3	-	-	-	-	3	-	-
3	-	-	-	-	3	-	-
3	-	-	-	-	3	-	-
3					3		

)

umentation techniques (L5)

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	1	2	-	-	2	-	-
-	1	3	-	-	1	-	-
-	1	2	-	-	1	-	-
	1	2.33			1.33		

ocial or transactional

nglish; formulate

ig texts; produce a

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
		2	3		1		

ce

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	-	-	-
-	-	-	-	-	-	1	-
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	-
-	-	-	-	-	-	2	-
-	-	-	-	-	-	3	-
-	-	-	-	-	-	3	-
						2.17	

EM

ormation into nonverbal information

d speak in English without inhibition

for English communication

cation and critically respond in English to a real life situations

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
		2	3		1		

ndental equations

s in engineering apart .

ation

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
					1		

nd volumes of solids.

ntegral theorems.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-

-	-	-	-	-	1	-	-
					1		

ots of light

ts of light.

ed.

in Quantum mechanics.

miconductor Physics and

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
-	-	-	-	-	1	-	-	
-	-	-	-	-	1	-	-	
-	-	-	-	-	1	-	-	
-	-	-	-	-	1	-	-	
-	-	-	-	-	1	-	-	
-	-	-	-	-	1	-	-	
					1			

assive elements.

rameters i.e R, L, C. and f.

rems.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						3	
						3	1
						2	
					1	3	2
					1	2	3
						1	1

nciples of projection &to draw Orthographic projections of points.

lines.

hic projections.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-

-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	1	-	-
					1		

useful points and paraphrase short academic texts using suitable strategies and slides with relevant graphical elements (L3)

anguage strategies (L3)

ts (L2)

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
-	-	2	3	-	1	-	-
		2	3		1		

s of light

s of light

ned

ear power generation

s of magnetic and

		•					
PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	-	-	-
-	-	-	-	-	1	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-

eparations.

ets using proper tin smithytools.

e on assembling and disassembling aPC.

nowledge on basics of internet and worldwide web.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

-	1	1	-	1	1	-	-
-	1	1	-	-	-	-	-
-	1	1	-	1	1	-	-
-	1	1	-	-	-	-	-
-	-	-	2	-	-	1	1
-	-	1	1	-	-	2	2
-	-	1	1	-	-	1	2
-	-	2	2	1	-	-	-

nester

lition.

ndition.

with different types of excitations.

k parameters.

ven network transfer function.

he response of a electrical network.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	2	2	1
-	-	-	-	-	2	2	1
-	-	-	-	-	1	2	1
-	-	-	-	-	1	2	1
-	-	-	-	-	2	2	1
-	-	-	-	-	1	1	1

ion.

nmutation in dc machines.

ne speed of dc motors.

e transformers.

thods and achieve three-phase to two-phase transformation.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	1	-	2	2	
-	-	-	1	-	3	3	2
_	-	-	-	-	1	3	2
-	-	-	1	-	1	3	2
-	-	-	1	-	2	3	2
	-	-	-	-	3	1	2

g Laplace's or Possion's equations, for various electric charge distributions.

ion of ampere's law and the Maxwell's second and third equations.

in magnetic field

the magnetic field.

nt current and Poynting vector.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
0	0	0	0	0	0	3	0
0	0	0	0	0	1	3	2
0	0	0	0	0	1	2	3
0	0	0	0	0	1	2	2
0	0	0	0	0	0	3	1
1	0	0	0	0	0	1	1

ngines, evaluation and performance of different systems in IC engines explain the working principles of impulse & reaction turbines including their efficiencies

d the impact of jet on vanes, explain the working principles of hydraulic pumps including soverning operation

erent loads by considering various factors

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
2	0	0	0	2	0	3	1
0	0	0	0	2	1	3	1
1	0	0	0	2	1	2	2
0	0	0	0	2	2	2	1
0	0	0	0	2	1	3	1
0	0	0	0	2	1	1	1

land.

even analysis to determine breakeven point.

ousiness organization.

ject worth.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	2	2	3	2
-	-	-	-	2	2	3	3
-	-	-	-		2	3	2
2	-	-	-	2	2	3	3
-	-	-	2	2	2	3	2
-	-	-	-	3	2	3	3

r lagging and leading networks.

·s.

ed loads

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1					1	2	2
1					1	2	2
1					1	2	2
2					2	2	2
1					2	2	2

nester

and current for ac and dc.

and energy – able to calibrate energy meter by suitable method

ers

neasuring instruments

ing CRO. Able to use digital instruments in electrical measurements.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		
						1	1
							1
						1	1

tion motor.

motor and induction generator.

nduction motors.

hronous generators.

ection of power factor with synchronous motor.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	-	-	-	-	1	2	2
	-	-	-	-		2	2
	-	-	-	-	1	1	
	-	-	-	-		2	1
	-	-	-	-		2	1
	-	-	-	-		1	

rations, r's complement representation, binary codes, logic gates and K-maps

iplexer, Comparator and etc

the procedure to Design simple applications like PROM, PAL and PLA.

sign different modulus counters.

sign different modulus counters.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	2	1	2
-	-	2	-	-	-	2	1
_	-	-	-	-	2	2	2
_	-	-	-	-	-	2	1
_	-	-	-	-	2	2	2
-	-	-	-	-	-	2	1

nination of overall transfer function using block diagram algebra and signal flow graphs.

r systems and to determine error constants.

ems using Routh's stability criterion and the root locus method.

inse methods.

performance from Bode diagrams.

the response. Understanding the concepts of controllability and observability.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
0	0	0	0	0	0	3	0
0	0	0	0	0	1	3	2
0	0	0	0	0	1	2	3
0	0	0	0	0	1	2	2
0	0	0	0	0	0	3	1
1	0	0	0	0	0	1	1

ower plants.

wer plants.

and also estimate voltage drops of distribution systems.

insulated substations.

ifferent insulating materials.

generation and tariffs.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
						1	
					1	1	1
					1	2	
						2	

	 	 		_
			_	
		1	٠)	1 1
		1		

of work study and SQC to improve productivity.

lems

es.

actices.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	2	2	2	2	-	2
-	-		2	2	2	-	2
-	-	2	3	2	2	-	2
-	-	-	2	3	2	-	2
-	-	-	2	2	2	-	2
-	-	-	2	2	2	-	2

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
					1	2	1
					1	2	1
					1	2	1

des

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
					1	2	1
					1	2	1
					1	2	1
					1	2	1

nester

during different operating conditions.

ion lines.		
lines.		
ission lines.		
formance of line insulators.		

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	2
					1	3	1
					1	1	1
					1	1	1
					1	2	1
					1	3	1

on earth's surface.	
rgy systems.	
neration.	
and geothermal systems.	

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		
					1		
					2		
					2		
					1		
					1		

ferent operations on signals, understand principles of vector spaces, Concept of orthgonality sing Fourier series. Analyse the continuous-time signals and continuous-time systems using ete-time signal and reconstruct back

ise of LTI system. Understand the concept of convolution, correlation, energy spectral densi systems and understand the concept of region of convergence.

and understand the concept of region of convergence

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	2	3	3
-	-	-	-	-	-	3	3
-	-	-	-	-	3	2	2
-	-	-	-	-	-	2	3
-	-	-	-	-	2	3	3
-	-	-	-	-	2	3	3

a DC DI C airevita	
e RC, RLC circuits	
various digital circuits.	
ì	
d analyze different types of Sampling Gates	

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	1	-	2	3	3
_	-	-	-	-	2	3	3
-	-	-	1	-	3	3	2
_	-	-	-	-	1	3	3
	-	-	1	-	-	2	2
-	-	-	-	-	-	2	2

and analyze the static and dynamic characteristics of SCR's.

ze harmonics in the input current.

es for voltage control and harmonic mitigation and analyze the operation of AC-AC

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	1						
	1						
	1						
	1						
	1						
	1						

iction motors	S	
---------------	---	--

rious methods.

e of three-phase synchronous motor.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
					1	2	1
					1	2	1
					1	2	1

C and A.C. servo motors and synchronous motors

ag-lead compensators

the transfer function of DC motor

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		-		-		1	-
		-		1		1	-
		-		-		-	-
		-		1		1	ı

current, power, energy and electrical characteristics of resistance, inductance and

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	
						1	

ctual properties (IPs) and their roles in contributing to organizational competitiveness. ual Property.

wnership, scope of protection as well as the ways to create and to extract value from IP. I sectors for the purposes of product and technology development.

available to the IP owner and describe the precautious steps to be taken to prevent

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	-	2	2	2	-	1	2
2	-	2	2	2	-	2	2
2	-	2	2	3	-	1	-
3	-	-	2	2	-	2	3
-	-	2	-	2	-	-	2
-	-	2	2	-	-	2	1

nester

ing methods.

our quadrant operations of dc motors using dual converters.

operation

oltage controllers and voltage source inverters.

hase induction motor...

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	2
					1	3	1
					1	1	1
					1	1	1
					1	2	1
					1	3	1

o understand per unit	t quantities.
-----------------------	---------------

ifferent methods.

the design of protective devices.

wer system network.

cepts of a power system

P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						1	2
						2	1
						1	1
						2	1
						1	1
					1	2	2

lore the evaluation of microprocessors.		
1		

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						2	
						2	
						1	2
						2	2

and their operations.

ks and queues, and will be able toillustrateapplications stacks.

ill be able apply linked list to implement stacks and queues.

es, binary search trees.

ues in the area of performance.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	1	-	-	-	-
-	-	-	1	-	-	-	-
-	-	-	-	-	-	-	-
-	-	1	1	-	-	-	-
-	-	1	1	-	-	-	-
-	-	2	2	-	-	ı	-

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		2
					2		2

		1	2
		2	2
		2	2
		1	2
		2	2
		2	2

and analyze gate drive circuits of IGBT.

I wave bridge converters with both resistive and inductive loads.

or with resistive and inductive loads.

singlephase square wave inverter and PWM inverter.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		1					
		1					
		1					
		1					

ning of micr	ning of microprocessor.										
PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				

		1	1	
		1	1	1
		1	1	

ked lists.

trees, graphs, etc. to solve various computing problems.

al world problems.

ecide when to choosewhich technique.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-

o the students that is relevant to resolving moral issues in engineering

concepts to engineering decisions

engineering areas, and to provide an understanding of the interface between social,

in the implementation of the engineering projects.

the budding engineers and make them uncorrupted.

.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	3	-	-	1	1	2	1
-	2	-	-	3	2	1	2
-	2	-	-	1	1	2	1
-	2	-	-	1	-	-	2
-	3	-	-	1	1	-	1
-	3	-	-	1	1	1	2

nester

olications

suitable applications.

it illuminating sources.

and recommend the most efficient illuminating sources and should be able to design differ of traction motors.

ration

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	1
						1	
					1	1	1
					1	2	

			2	
		1	2	1

lifiers.

e parameters of OP-AMP.

nplifiers.

filters using op-amps

L and Timers.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	-	3	2
-	-	-	-	-	-	3	3
-	-	-	-	-	2	2	3
-	-	-	-	-	3	3	3
-	-	-	-	-	-	2	3
						1	

a systems.

nission line.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	. 30	. 30	. 310	. 322	2		2
-	-	-	-	1	2	1	2
-	-	-	1	-	2	1	1
-	-	-	1	1	2	1	1
-	-	-	1	-	2	-	1
-	-	-	-	1	2	-	1
-	-	-	-	1	2	1	2

to high voltage circuit breakers of air, oil, vacuum, SF6 gas type.

it types of electromagnetic protective relays.

h power generator and transformers.

nes used for feeders and bus bar protection.

ons.

chemes required for insulation co-ordination.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	1	2	1
-	-	-	-	-	2	1	2

-	-	-	-	-	1	-	1
-	-	-	-		-	2	2
-	-	-	-	-	-	1	1
-	-	-	-	-	1	2	3

ocity, temperature, pressure etc.

digital voltmeters.

nal with the help of CRO.

analyzers.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		2
					2		1
					1		-
					-		2
					-		1
					1		2

motors			
plications.			
ır.			
ear motors.			

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		1
					1		1
					1		1
					1		1
					1		1
					1		1

oonse Of RIc Circuit.			
Sonse of the chedic.			
Newton Raphson method.			

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1		2
					2		2
					2		2
					2		2
					2		1
					1		2
					2		2
					2		2

I dispatch centre.

components.

ents.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		1			1		2
		1					2
		1					1
		1					1

nester

ntrollability and observability and finding the stability

led compensators

nt technique and using Ackerman's formula

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
0	0	0	0	0	0	3	0
0	0	0	0	0	1	3	2
0	0	0	0	0	1	2	3
0	0	0	0	0	1	2	2
0	0	0	0	0	0	3	1
1	0	0	0	0	0	1	1

d flow.			

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
0	0	0	0	0	1	1	1
0	0	0	0	0	1	1	2
0	0	0	0	0	1	1	2
0	0	0	0	0	1	1	2
0	0	0	0	0	1	1	2
0	0	0	0	0	1	1	2

٠:				۱_	_	۔ ا۔	
ГΙ	റr	ור)T	n	a	dς	

ions.

erent types of faults and protective devices.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
					1	2	2
					1	3	1
					1	1	1
					1	1	1
					1	2	1
					1	3	1

ontrollers.

er oscillations in the transmission lines.

ensators.

itors.

ed Power Quality Conditioner and Interline Power Flow Controller).

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	1	2	1
-		-	-	-	2	1	2
-	-	-	-	-	1	1	2
-	-	-	-	-	-	2	1
_	-	-	-	-	-	2	1
-	-	-	-	-	1	2	3

nd services and other search tools and databases.

of academic writing.

essional contexts and gain experience in formal/informal presentation.

eading, writing, speaking, researching skills.

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
-	-	-	-	-	3	2	2
-	2	3	3	-	2	-	-
-	-	-	-	-	2	3	-
-	-	-	2	-	3	2	-

problem in the relevant technical area.

ms within the given constraints and handle larger problems at an advanced level within nd correlate it with other scientific results.

oup, with strict requirements on structure, format and language usage.

continuously develop one's own competencies

PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		2				3	
		2		3	1	2	2
		3		2	1	2	3
		3		3	1	2	2
		2		2	1	3	1